
International Journal on Artificial Intelligence Tools
c© World Scientific Publishing Company

Parameter Setting for Deep Neural Networks using Swarm Intelligence
on Phishing Websites Classification

Grega Vrbančič, Iztok Fister Jr. and Vili Podgorelec

Faculty of Electrical Engineering and Computer Science, University of Maribor
Koroška cesta 46, Maribor, SI-2000, Slovenia

grega.vrbancic@um.si
iztok.fister1@um.si
vili.podgorelec@um.si

Received 23 November 2018
Revised 3 May 2019

Accepted 24 July 2019

Over the past years, the application of deep neural networks in a wide range of areas is
noticeably increasing. While many state-of-the-art deep neural networks are providing
the performance comparable or in some cases even superior to humans, major chal-
lenges such as parameter settings for learning deep neural networks and construction of
deep learning architectures still exist. The implications of those challenges have a sig-
nificant impact on how a deep neural network is going to perform on a specific task.
With the proposed method, presented in this paper, we are addressing the problem of
parameter setting for a deep neural network utilizing swarm intelligence algorithms. In
our experiments, we applied the proposed method variants to the classification task for
distinguishing between phishing and legitimate websites. The performance of the pro-
posed method is evaluated and compared against four different phishing datasets, two
of which we prepared on our own. The results, obtained from the conducted empirical
experiments, have proven the proposed approach to be very promising. By utilizing the
proposed swarm intelligence based methods, we were able to statistically significantly
improve the predictive performance when compared to the manually tuned deep neu-
ral network. In general, the improvement of classification accuracy ranges from 2.5% to
3.8%, while the improvement of F1-score reached even 24% on one of the datasets.

Keywords: Machine Learning, Neural Networks, Optimization, Swarm Intelligence,
Phishing, Website Classification

Citation detail: G. Vrbančič, I. Jr. Fister, & V. Podgorelec, Parameter Setting
for Deep Neural Networks Using Swarm Intelligence on Phishing Websites Classifi-
cation, International Journal on Artificial Intelligence Tools, Vol. 28 No. 6, pp. 1 -
28, 2019. http://dx.doi.org/10.1142/S021821301960008X

Preprint: Preprint of an article published in International Journal on Arti-
ficial Intelligence Tools, Vol. 28,
No. 06, pp. 1-28, http://dx.doi.org/10.1142/S021821301960008X c© World Scien-
tific Publishing Company https://www.worldscientific.com/worldscinet/ijait

1

2 Vrbančič, Fister Jr. & Podgorelec

1. Introduction

With the noticeable advancements in the field of machine learning, we can observe
the horrendous increase in utilization of different types of deep neural network
(DNN) against various kinds of tasks. While state-of-the-art convolutional neural
networks (CNN) and recurrent neural networks (RNN) can deliver the performance
comparable or in some cases even superior to humans, especially in the fields such
as image recognition 1,2,3, speech recognition 4 and natural language processing 5,
on the other side some kinds of DNNs can fall behind the conventional classifi-
cation methods, mostly against the tasks involving structured data. Regardless of
the strengths and weaknesses of different kinds of DNNs, one biggest weakness is
common to them all – finding the right learning parameters and network topology
to achieve the best performance for a given task. The biggest challenge in finding
the right parameters settings for the DNNs is that there is no general rule or recipe
to follow, which would guarantee a good outcome. It more or less depends on our
previous experience and trying out different parameter settings.

Not many studies were conducted addressing the problem of parameters settings
of DNN. One such early attempt is presented by authors 6, where the tuning of the
structure and parameters of a neural network using an improved genetic algorithm
is presented. The use of a genetic algorithm is not surprising, as the problem of
parameter setting can be regarded and represented as an optimization problem,
and evolutionary algorithms have proven to be successful in solving such problems.
In this manner, the use of evolutionary approaches were common to few studies
that followed 7,8, until in the recent year, based on the published studies in this
field, the trend of optimizing learning parameters for a NN seems to pick up. There
are several studies 9,10,11, where the authors are trying to optimize the architecture
and training parameters of feed-forward DNNs, CNNs and RNNs, again with the
use of evolutionary approaches.

Swarm intelligence algorithms, like evolutionary algorithms, are fast and effi-
cient algorithms for solving discrete as well as continuous optimization problems as
authors presented in 12,13. These families of algorithms consist of a population of
individuals that undergo variation operators governed by some principles inspired
by natural and biological systems 14. For instance, bat algorithm 15 that mimic the
echolocation of micro-bats, undergo the variation operator guided by this physical
phenomenon, while individuals in firefly algorithm 16 undergo variation operator
that is based on bioluminescence phenomenon of fireflies.

It has been shown recently, that swarm intelligence algorithms have some ad-
vantages over evolutionary algorithms. They generally require less computational
resources 17 and perform especially well when dealing with a smaller number of
function evaluations 18, while genetic algorithms and differential evolution perform
relatively better when the computational budget is large 18. As the learning pro-
cess of DNNs is already computationally very demanding, the introduction of a
population-based iterative optimization method over it requires a lot of computa-

Parameter Setting for Deep Neural Networks using Swarm Intelligence ... 3

tional resources. For this purpose, in our recent work, we adopted the swarm intelli-
gence approach to attempt to optimize the training parameters of DNNs 19 as well
as the architecture of a feed-forward DNNs 20. By setting the learning parameters
in this way, the prediction performance of the used DNNs improved.

Encouraged by these promising results, in this paper we present a new, expanded
method, titled as PSDNN.BA, PSDNN.HBA, or PSDNN.FA (Parameter Setting
for Deep Neural Network, using Bat Algorithm / Hybrid Bat Algorithm / Firefly
Algorithm), which utilizes swarm intelligence approaches for parameter settings of
DNNs. The conceptual architecture of our expanded method is presented in a Fig. 1.

BA/HBA/FA

Pass solution
array

Train and test NN

Calculate Fitness

Pass test
accuracy

Pass fitness value

Pass parametersMapping
solution
values

Fig. 1: The conceptual diagram of proposed PSDNN.BA/PSDNN.HBA/PSDNN.FA
method.

The main goal of our research is to study whether a NN with parameters set by
utilizing our proposed method will provide better classification performance than
NN with recommended, sanely handpicked settings. The main advantage of the
proposed method is the very straightforward usage with various feed-forward NN
topologies and different datasets, without the need to manually search for right
learning parameters.

To validate the proposed method, we applied its three variants to the problem
of distinguishing between phishing and legitimate websites. A phishing attack is a
type of extensive fraud that happens when a malicious website acts, looks and feels
almost identical to the legitimate one, keeping in mind that the end goal is to obtain
victim’s sensitive data 21. The victims of phishing attacks often find their personal
or financial information, such as their credit card numbers, health or insurance
information, email, addresses, login credentials, and other sensitive data, stolen.
Once that kind of information is stolen, it can be used to create fake accounts in
the victim’s name which can have a severe impact on their credit ratings or prevent
them from accessing their accounts, leading to a lack of financial credibility 22.

For the purpose of in-depth performance evaluation of our proposed method

4 Vrbančič, Fister Jr. & Podgorelec

variants, we conducted experiments against four different kinds of phishing websites
datasets:

• The Phishing Websites dataset by Mohhamad with 30 features and 11,055
instances,
• The Phishing Websites dataset by Abdelhamid with 9 features and 1,353

instances,
• The Phishing Websites dataset by Vrbančič - small with 111 features and

58,645 instances and
• The Phishing Websites dataset by Vrbančič with 111 features and 88,657

instances.

As can be observed from the list, the datasets with various number of instances,
features and decision classes were used. The last two of the listed datasets we pre-
pared on our own.

The main contributions of this paper can be summarized as follows:

• a new, expanded method for parameter setting of deep neural networks
utilizing nature-inspired algorithms is presented,
• the presented method variants are evaluated on a four different Phishing

datasets, two of which we collected on our own and are presented for the
first time and
• the in-depth performance comparison study is conducted against the con-

ventional classifier logistic regression and baseline neural network.

The remaining of the paper is organized as follows. Section 2 briefly de-
scribes the methods we used. In Section 3 we present the proposed PS-
DNN.BA/PSDNN.HBA/PSDNN.FA method, followed by the description of the
experimental setup in Section 4. Results of our conducted experiments are pre-
sented in Section 5 and finally, our conclusions and final thoughts are gathered in
Section 6.

2. Methods

In this section the utilized methods and algorithms of our proposed method are
presented more in-depth. First, we describe the principles of swarm intelligence and
present the algorithms which were used and secondly we present the principles and
motivation behind the deep learning. Our proposed method based on presented
methods and algorithms is in-depth described in the next section.

2.1. Swarm Intelligence

In order to tackle the optimization problems that were arising in almost every do-
main of human endeavor, scientists were looking back to nature to get inspiration
for the design of complex algorithms. Such algorithms mostly mimic the biological

Parameter Setting for Deep Neural Networks using Swarm Intelligence ... 5

features of some fascinating animal species, like ants, bees, bats or fireflies. Roughly
speaking, these species are capable of decentralized decision making, coordinated
movement as well as collective behavior. Algorithms that are based on these fea-
tures belong to the family of swarm intelligence algorithms. In the past years, many
surveys have shown how promising these algorithms are for solving problems in
various domains. Due to the popularity of this research area, many swarm intelli-
gence algorithms were proposed. However, our study is based on the bat algorithm
(BA) 15, hybrid bat algorithm (HBA) 23 and firefly algorithm (FA) 16,24. All men-
tioned algorithms are characterized in the next subsection.

2.1.1. Bat algorithm

Bat algorithm is a member of the swarm intelligence family that is inspired by the
behavior of micro-bats. BA was developed by Xin-She Yang in 2010 15. Interest-
ingly, some origins of BA can also be found in particle swarm optimization algorithm
and simulated annealing heuristics. Pseudocode of basic BA is presented in Algo-
rithm 1, where parameter D denotes dimension of the problem, Np is population
size, MAX_FES is number of function evaluations, Ai is loudness and ri is pulse
rate.

Algorithm 1 Canonical bat algorithm
Input: Bat population xi = (xi1, . . . , xiD)T for i = 1 . . . Np, MAX_FES.
Output: The best solution xbest and its corresponding value fmin = min(f(x)).

1: init_bat();
2: eval = evaluate_the_new_population();
3: fmin = find_the_best_solution(xbest);
4: while termination_condition_not_meet do
5: for i = 1 to Np do
6: y = generate_new_solution(xi);
7: if rand(0, 1) > ri then
8: y = improve_the_best_solution(xbest)
9: end if

10: fnew = evaluate_the_new_solution(y);
11: eval = eval + 1;

12: if fnew ≤ fi and N(0, 1) < Ai then
13: xi = y; fi = fnew;

14: end if
15: fmin=find_the_best_solution(xbest);
16: end for
17: end while

Main components of BA are the following:

6 Vrbančič, Fister Jr. & Podgorelec

• initialization: the initial population is being generated as well as evaluated,
• generation of the new solution: virtual bats are moved within the search

space according to the physical rules of echolocation,
• local search step: the best solution is improved using random walk direct

exploitation heuristic,
• evaluation of new solution: evaluating the newly generated solution,
• conditional saving of best solution: the new best solution is saved under

some probability that is denoted by parameter Ai,
• finding the best solution: finding the current best solution.

Interested readers are invited to check a more detailed description of BA in
paper 15.

2.1.2. Hybrid bat algorithm

Hybrid bat algorithm 23 is one of the first hybrid variants of BA. HBA is hy-
bridized with the mutation strategies of differential evolution. In other words, ran-
dom walk step from the original bat algorithm is eliminated and replaced by the
mutation strategy. Hybridization is presented in Algorithm 2. HBA has achieved
very promising performance when solving small-scale global optimization problems.
For that reason, HBA is also evaluated on the problem of finding parameter settings
for deep neural network training that belong to small-scale optimization problems.

Algorithm 2 Hybridization step in bat algorithm
1: if rand(0, 1) > ri then
2: ri=1...3 = brand(0, 1) ∗Np+ 1c;
3: n = rand(1, D);
4: for i = 1 to D do
5: if ((rand(0, 1) < CR)||(n == D)) then
6: yn = xr1,n + F ∗ (xr2,n − xr3,n);
7: n = (n+ 1)%(D + 1);
8: end if
9: end for

10: end if

2.1.3. Firefly algorithm

Firefly algorithm is another swarm intelligence algorithm that was developed by Xin-
She Yang in 2008 16,24. The phenomenon of fireflies lies in the flashlights. Flashlights
attract mating partners as well as serve as a mechanism of protection. Their light
intensity I decreases when the distance r from the light source increases according
to term I ∝ r2.

Yang proposed three idealized rules that govern FA:

Parameter Setting for Deep Neural Networks using Swarm Intelligence ... 7

• all fireflies are unisex,
• their attractiveness is proportional to their brightness, and
• the brightness of a firefly is affected or determined by the landscape of the
objective function.

According to the Algorithm 3, main components of FA algorithms are the fol-
lowing:

• InitializeFA(): the initial population is being generated,
• EvaluateFA(): evaluating the new solution,
• OrderFA(): forming an intermediate population by ordering the solutions
into the original population according to the ascending values of the objec-
tive function,
• FindTheBestFA(): determining the best solution in the current population.
The best solution found so far is preserved.
• MoveFA(): moving the fireflies towards the search space according to the
attractiveness of their neighbor’s solutions.

Algorithm 3 Canonical Firefly algorithm

1: t = 0; s∗ = ∅; γ = 1.0;

2: P (0) = initialize_FA();
3: while (t < MAX_FES) do
4: α(t)= AlphaNew();
5: evaluate_FA(P (t), f(s));
6: order_FA(P (t), f(s));
7: s∗ = find_the_best_FA(P (t), f(s));
8: P (t+1) = move_FA(P (t));
9: t = t+ 1;

10: end while

2.2. Deep learning

A standard NN as we know for decades, consists of many simple connected proces-
sors known as neurons, each producing a sequence of real-valued activations. In the
most widely used type of NN, neurons are stacked together in form of layers. The
first layer, known as an input layer, consists of neurons which get activated through
sensors perceiving the environment. The outputs of the previous layer become the
weighted input to the next layer, with no interconnections of neurons within each
layer. Learning such NN is about finding the right weights that make the NN exhibit
desired behaviour 25,26.

Depending on problems, the process of training a NN may take long causal
chains of computational stages, where each stage transforms (mostly in a non-linear

8 Vrbančič, Fister Jr. & Podgorelec

way) the aggregate activation of NN. Deep learning is about accurately assigning
credit across many such stages. Since 1980 back-propagation played an important
role as an efficient gradient descent algorithm. It trains the NNs with a teacher-
based supervised learning approach 27. Many deep learning applications use feed-
forward NN topologies, which learn fixed-size input to a fixed size output (e.g.
probability for each of several categories). Going from one layer to the next, a set
of weighted sum is computed from the inputs of the previous layer and passed
through a non-linear function. Currently most popular non linear function is the
rectified linear unit (ReLU) 28, which is the half-wave rectifier f(z) = max(z, 0).
Opposed to other previously most commonly used smoother non-linearities, such
as tanh(z) or 1/(1 + exp(−z)), ReLU typically learns much faster, especially in
networks with many hidden layers, allowing training of deep supervised network
without unsupervised pre-training 29,30.

Beside feed-forward NN the most widely used type of NN topology is a recurrent
neural network (RNN), which contains feedback connections from neurons in the
subsequent layers to neutrons in the preceding layers. This implied that the output
of such NN not only depends on the external inputs but also on the state of the
network in the previous training iteration 31. RNNs are very powerful dynamic
systems, mostly used for tasks which involve sequential inputs such as speech and
language, but training them has proved to be problematic 30.

3. Proposed method

The proposed method is based on applying a selected swarm intelligence algorithm
(we used BA, HBA and FA) to the problem of parameter setting for a DNN (PS-
DNN), giving us three variants named PSDNN.BA, PSDNN.HBA, and PSDNN.FA
(Fig. 1). The task of optimizers BA/HBA/FA is to find an optimal solution – the
parameter values to train a given DNN. The solution consists of one-dimensional
array with four items, each representing one of the parameters we are trying to op-
timize: the number of epochs, batch size, learning rate and the number of neurons
in the first hidden layer (the number of neurons in the second hidden layer is fixed
and it matches the number of neurons of the input layer). The task of finding the
optimal solution is in an iterative manner. Each solution produced by the utilized
optimizer is evaluated through the process of training and testing DNN. Based on
the achieved performance, fitness value for a used solution (parameter settings) is
calculated. The fitness value represents the quality of found solution (the predictive
performance of a neural network, trained using the given set of parameters, in our
case). In the final step, the fitness value is reported back to the optimizer algorithm,
which constructs a new solution. In this manner, the solution with the best fitness
value in the last iteration cycle is taken as the final solution, and always represents
the best solution found during the optimization.

The Algorithm 4 is presenting our proposed method more in depth. As we can see

Parameter Setting for Deep Neural Networks using Swarm Intelligence ... 9

most of the steps are actually similar to steps presented in Algorithm 1 a. However,
the most important components that differ from Algorithm 1 are the following:

• representation of individuals,
• design of fitness function, and
• design of the NN.

All three components are described in detail in the next subsections.

Algorithm 4 Proposed method (PSDNN.BA)
Input: Control parameter settings, Dataset
Output: The best model with parameters set based on best solution

1: BA.init();
2: while termination_condition_not_meet do
3: solution = BA.get_best_solution();
4: epoch = map_epoch(solution[0]);
5: batch = map_batch(solution[1]);
6: learning_rate = map_learning_rate(solution[2]);
7: num_neurons = map_num_neurons(solution[3]);
8: fitness = train_and_eval(epoch, batch,

learning_rate, num_neurons);
9: BA.generate_new_solution(fitness);

10: end while
11: best = create_model(BA.get_best_solution());

3.1. Representation of individuals

Individuals in PSDNN.BA, PSDNN.HBA, and PSDNN.FA are presented as real-
valued vectors:

x
(t)
i = (x

(t)
i,0, . . . , x

(t)
i,n), for i = 0, . . . ,Np − 1 , (1)

where each element of the solution is in the interval x(t)i,1 ∈ [0, 1].
Real values are then mapped according to equations 2, 3, 4 and 5 where y1

stands for number of epochs, y2 for batch size and y4 for learning rate used to train
NN. The value y3 is representing the number of neurons in the first hidden layer
of our NN topology and the n is representing the numbers of neurons in the first

aPseudo-code presents the proposed method variation utilizing BA optimizer. The utilization of
HBA and FA optimizers is done in the same manner.

10 Vrbančič, Fister Jr. & Podgorelec

hidden layer of NN while the m is denoting the number of features based on given
dataset.

y1 = bx[i] ∗ 100 + 100c; y1 ∈ [100, 200] (2)

y2 =

⌊
x[i] ∗ 100

2
+ 1

⌋
; y2 ∈ [1, 100] (3)

y3 = bx[i] ∗ (m ∗ 2− 1) + 1c; y3 ∈ [1,m ∗ 2],m ∈ N (4)

y4 = x[i] ∗ (0.1− 10−6) + 10−6; y4 ∈ [10−6, 0.1] (5)

3.2. Fitness function

We defined fitness function using the accuracy of classification calculated on a
test part of our search subset, which represents the 20% of the initially given
dataset. Formally, we can express fitness function as presented in equation (6), where
search_test_acc stands for previously mentioned classification accuracy. Because
BA, HBA and FA are basically designed to search for the global minimum, we are
converting the problem of searching maximal accuracy to the problem of searching
for the minimum with the subtraction of the accuracy from a value 1.

f(search_test_acc) = 1− search_test_acc (6)

3.3. Neural network

For the topology of a NN, we propose a feed-forward NN with two fully-connected
hidden layers presented in Fig. 2. The arhitecture of the NN is constructed based on
out previous experience with feed-forward NNs 19,20 and practical recommendations
presented in 32. The number of neurons on the input layer is equal to the number
of features of the given dataset, while the number of neurons in the output layer
is matched with the number of unique target classes of the dataset. The width of
the first hidden layer is defined with a y3 value from equation (4) in the previous
subsection, while the number of neurons is the same as the number of features.
For the classification problems, we propose using a non-linear activation function
ReLU on hidden layers and a softmax function on the output layer. Instead of
conventional stochastic gradient descent (SGD) 33 optimizer we propose ADAM 34

optimizer, which is designed to combine the advantages of two recently popular
methods: AdaGrad 35 and RMSProp 36.

Parameter Setting for Deep Neural Networks using Swarm Intelligence ... 11

Input layer

Hidden layer Hidden layer

Output layer

Fig. 2: The topology of used feed-forward neural network.

4. Experiment setup

In this section, we describe the experimental setup that we followed to evaluate the
performance of the proposed approach. First, we describe the data collection and
composition of the four phishing websites datasets, which were used for performing
the empirical experiments. Then we list the classification algorithms, which were
used to identify the phishing websites in four different datasets. Finally, we explain
the evaluation method and the classification performance metrics used in the com-
parison. The obtained experimental results are presented and discussed in the next
section.

4.1. The Phishing Websites datasets

There are different approaches to tackle the problem of identification of phishing
websites reported in literature 37. Typically, the two most technical methods in
fighting phishing attacks are the blacklist and the heuristic-based 38,39. In the
blacklist method, the requested URL is compared with a predefined phishing URLs.
The downside of this method is that it typically does not deal with all phishing
websites since a newly launched fake website takes a substantial amount of time
before being added to the list. In contrast to the blacklist approach, the heuristic-
based approach can recognize newly created fake websites in real-time 40.

In general, the majority of publicly available phishing datasets are prepared
using the heuristic-based approach. The most common representatives of such
datasets, used in research studies are The Phishing Websites dataset by Mohammad
41 and The Phishing Websites dataset by Abdelhamid 37. Regardless of the manner
of technical methods used in the later preparation process of the dataset, there is a
generally used recipe on how to obtain the data and which or what kind of features
to extract from the data. The mentioned recipe roughly consists of the following
steps:

12 Vrbančič, Fister Jr. & Podgorelec

• manually obtain the phishing websites URLs,
• manually obtain the legitimate websites URLs,
• automatically extract and/or calculate features from URLs and/or websites,

and
• optionally automatically extract and apply some heuristic rules.

There are many features that can possibly distinguish phishing websites from
other (legitimate) types of websites in the research literature of phishing. In this
manner, the constructed features, in general, belong to one of the following groups:
Address Bar based features, Abnormal based features, HTML and JavaScript-based
features, and Domain-based features. In table 1 are presented some of the most
important features of each group.

Table 1: Some of the most important features, used to detect the phishing websites

Group Features
Address bar based features Using the IP address

Long URL to hide the suspicious part
URL having @ symbol

Adding prefix or suffix to domain
Sub-domain and multi sub-domain

Fake HTTPS and SSL
...

Abnormal based features Request URL
URL of anchor

Server form handler
Abnormal URL

...
HTML and JavaScript based features Redirect page

Hide the link using onMouseOver
Disabling right click
Using pop-up window

...
Domain based features Age of domain

DNS record
Web traffic

...

The constructed features, shown in Table 1 can take in general a binary or
natural values where binary features hold either "phishy" or "legitimate" status
because the existence or lack of the feature within the website determines the value
assigned to it. In the case of the application of the heuristic rules is also common
to construct the features which take ternary values. Those hold, in addition to the
binary ones, the value "suspicious", where the existence of the feature in a specific
ratio determines the value assigned for that feature.

After an in-depth study of the existing phishing datasets, we came to the con-
clusion, that the majority of such datasets is more or less outdated and not quite

Parameter Setting for Deep Neural Networks using Swarm Intelligence ... 13

large. In order to properly benchmark our proposed method variants on various
kinds and sizes of datasets, we were lacking larger dataset with the higher number
of features. On those bases we prepared two new, larger phishing website dataset
variants.

We conducted the experiment on total four phishing datasets: The Phishing
Websites dataset by Mohhamad 41, The Phishing Websites dataset by Abdel-
hamid 37 and two variants of our new dataset - The Phishing Websites dataset
by Vrbančič, which are accessible on the following address 42. Each of them is char-
acterized in the following subsections.

4.1.1. The Phishing Websites dataset by Mohammad

The heuristic-based approach has been applied in the case of preparing the Phishing
Websites dataset by Mohammad 41. The authors defined an approach for extracting
features from the web page itself rather than user experience. First, the authors
examined whether a page contains any text fields since a phishing web page requires
users to input credentials through those fields 43. If a page has at least one text input
then they proceeded to extract the other features. After extracting the features, the
authors collected a number of URLs from the PhishTank data archives 44, which
are free community sites for sharing phishing data, using their tool. Based on the
analysis of each extracted feature’s frequency within the collected addresses, the
importance of a feature was reflected, and finally, the heuristic rules for determining
whether a specific website is a phishing one or not regarding a specific feature were
devised.

All the features’ values have been determined in accordance with a set of heuris-
tic rules, devised to best reflect the presence of potentially phishy websites 37,41.
For example, let us examine the feature "Sub-domain and multi sub-domain". A
technique used by phishers to scam users is by adding a sub-domain to the URL so
users may believe they are dealing with an authentic website. In this manner, the
following heuristic rule can be devised:

IF

dots in domain part < 3 =⇒ legitimate

dots in domain part = 3 =⇒ suspicious

else =⇒ phishy

Similar heuristic rules have been determined for all other features as well. The
basic information about the Phishing Websites dataset by Mohammad is presented
in Table 2.

4.1.2. The Phishing Websites dataset by Abdelhamid

The Phishing websites dataset by Abdelhamid is in general prepared in the same
manner as the previously described phishing dataset by Mohammad. The authors
collected over 1,350 websites from different sources. The phishing websites authors

14 Vrbančič, Fister Jr. & Podgorelec

Table 2: The basic information about the Phishing Websites dataset by Mohammad

Parameter Value
Number of features 30
Number of instances 11,055
Number of classes 2 classes

Distribution of classes 4,898 phishing websites
6,157 legitimate websites

collected from the Millersmiles 45 and Phishtank data archives, which are free com-
munity sites for sharing phishing data while the legitimate websites were collected
from Yahoo directory utilizing authors own developed PHP script 37.

In their study, after performing the frequency analysis against collected website
URLs, the authors have identified sixteen different features plus the target class.
The authors have also performed some association rule mining and applied heuristic
rules against the obtained dataset. Also, all of the collected features were assessed
in order to identify the smallest significant set of features. Finally, the authors have
applied the Chi-Square methodology to further assess the relevance of extracted
features, which has shown that nine out of ten features have a correlation with the
class attribute values. The final outcome of the performed study is the phishing
websites dataset which basic information is presented in Table 3.

Table 3: The basic information about the Phishing Websites dataset by Abdelhamid

Parameter Value
Number of features 9
Number of instances 1,353
Number of classes 3 classes

Distribution of classes 702 phishing websites
103 suspicious websites
548 legitimate websites

4.1.3. The Phishing Websites dataset by Vrbančič

In order to evaluate the performance of our proposed method variants against
larger datasets with many features we prepared two variants of new phishing web-
sites datasets, a balanced and an imbalanced one. Following the common recipe
for preparing such datasets, we firstly collected a list of confirmed phishing URLs
(30,647) from the Phishtank website. The list of legitimate URLs was obtained from
Alexa ranking website from which we gathered 58,000 legitimate website URLs. We
also obtained the list of community labeled and organized URLs (27,998) which are
containing the objectively reported news and are in that manner also legitimate.

From those gathered URLs we extracted 111 features, in our case mostly ad-

Parameter Setting for Deep Neural Networks using Swarm Intelligence ... 15

dress bar based and domain based features. For extracting the features which are
categorized in the group of address bar based features, we performed a counting of
special characters - symbols on different parts of URL (whole URL, domain, folder,
file, parameters) as presented in Table 4. Categorized under domain based features
we extracted features such as search time response domain, time (in days) of do-
main activation, the number of resolved name servers, time-to-live value associated
with the hostname, etc. All values of the address bar based features are holding the
natural numbers including zero (N∪{0}), while the missing values are presented as
−1 value.

Table 4: List of symbols used for extracting the address bar based features.

Symbols
dot (.) space ()

hyphen (-) tilde (~)
underline (_) comma (,)

slash (/) plus (+)
question mark (?) asterisk (*)

equal (=) hashtag (#)
at (@) dollar ($)
and (&) percent (%)

exclamation (!)

In contrast to the other two datasets, we did not perform any additional heuris-
tics or apply any rules against the extracted features, so the values of features
are as they were collected. From the collections of phishy and legitimate websites,
we prepared two variants of the dataset, one with more balanced data, named
Vrbančič-small and one with unbalanced data named Vrbančič. The Vrbančič-small
dataset consists instances of extracted features from Phishtank URLs and instances
of extracted features from community labeled and organized URLs representing le-
gitimate ones, resulting in a dataset with quite equal distribution between classes.
On the other hand, the Vrbančič dataset consist from all of the instances from
the Vrbančič-small dataset and the additional instances of extracted features from
Alexa top sites URL list, so that the latter dataset variant is quite unbalanced in
favor of legitimate instances. The basic information of dataset variants is presented
in Table 5.

The prepared variants of datasets allows us to perform experiments and validate
the performance of our proposed method variants against datasets of various sizes,
which enables us gather more generalized view on the methods performance.

4.2. Baseline and compared methods

In order to assess the performance of the proposed approach and its applicability
to the identification of phishing websites, a series of tests has been carried out, in
which we measured website classification performance.

16 Vrbančič, Fister Jr. & Podgorelec

Table 5: The basic information about the Phishing Websites dataset variants by
Vrbančič

Parameter \ Dataset Vrbančič-small Vrbančič
Number of features 111 111
Number of instances 58,645 88,647
Number of classes 2 classes 2 classes

Distribution of classes 30,647 phishing websites 30,647 phishing websites
27,998 legitimate websites 58,000 legitimate websites

The first classification method that we used in our comparison was a logistic
regression (LR), which have its origin in statistics and share many similarities with
artificial neural networks (ANN). LR and ANNs have common roots in statisti-
cal pattern recognition, and the ANNs can be seen as a generalization of LR 46.
The second classification method, which served as a baseline, we used a multilayer
feed-forward neural network with handpicked training parameters (base), as will be
described below. To assess the proposed meta-heuristic approach PSDNN, we used
three different swarm intelligence approaches for setting the parameters of deep
learning neural networks: a bat algorithm (PSDNN.BA), a hybrid bat algorithm
(PSDNN.HBA), and a firefly algorithm (PSDNN.FA).

4.2.1. Baseline neural network

As a baseline classification method in the experiment, we defined a feed-forward
NN with two fully connected hidden layers and a fully-connected output layer. The
width (the number of neurons) of layers is set dynamically, based on the parameters
passed in the initialization phase and is matching the number of features in a given
dataset resulting in the baseline neural network architectures presented in Table 6.

Table 6: Properties of baseline neural network architectures.

Dataset Nr. of neurons Nr. of neurons
in hidden layers in output layer

Phishing Websites dataset by Mohammad 30 2
Phishing Websites dataset by Abdelhamid 9 3

Phishing Websites dataset variants by Vrbančič 111 2

The number of neurons in the output layer is set to match the number of target
classes in the given dataset. Both hidden layers are using a non-linear activation
function ReLU, while the output layer is using softmax. As proposed in Section 3.3,
we used ADAM as the optimizer function.

Parameter Setting for Deep Neural Networks using Swarm Intelligence ... 17

4.2.2. Bat, hybrid bat and firefly algorithm parameters

For initializing the parameters of the bat, hybrid bat and firefly algorithms, we used
the values presented in Table 7.

Table 7: Used parameter values for bat, hybrid bat, and firefly algorithms

Parameter BA HBA FA
Dimension of the problem 4 4 4

Population size 40 40 40
Number of function evaluations 400 400 400

Lower bound 0.0 0.0 0.0
Upper bound 1.0 1.0 1.0
Loudness 0.5 0.5 –
Pulse rate 0.5 0.5 –

Min. frequency 0.0 0.0 –
Max. frequency 2.0 2.0 –
F (Scaling factor) – 0.5 –

CR (Crossover probability) – 0.5 –
Alpha – – 0.5

Betamin – – 0.2
Gamma – – 1.0

Initialized with the given parameters, the three swarm intelligence algorithms
are used to search for the optimal values for the following parameters: a number of
epochs, batch size, learning rate and the number of neurons in the first hidden layer
of NN.

4.2.3. Learning parameters

Based on 34 and our previous experience in machine learning, we handpicked the
learning parameters as optimal as possible. For batch size we choose 32, for learning
rate 10−3 and for the number of epochs 150.

The performance of baseline NN with these parameters should give us a good
starting point in comparison of performance between conventional methods (LR,
base) and our proposed methods (PSDNN.BA, PSDNN.HBA, PSDNN.FA).

4.2.4. Computing environment

For the proposed deep learning approach the experiments were implemented with
Python programming language using the following libraries: NiaPy 47, Keras 48,
NumPy 49, Pandas and scikit-learn 50. All classification models were used with
their default settings.

All of the conducted experiments were performed using the 8-core Intel Core
i7-6700 CPU with clock speed at 3.4GHz and 16GB of DDR4 memory.

18 Vrbančič, Fister Jr. & Podgorelec

4.3. Evaluation method and metrics used

Considering the imbalance of the datasets, we performed the evaluation using two
predictive performance measures – the accuracy and the F1-macro score. While ac-
curacy measures the ratio of correctly classified websites among all tested regardless
of their class (whether a website is phishy or not), the F1-macro score is a harmonic
mean of the precision and recall, averaged over all decision classes. The F1 score is
computed for each class within the dataset and then the average is obtained over
all classes. In this way, equal weight is assigned to each class regardless of the class
frequency.

To objectively evaluate the performance of the proposed classification approach,
and to compare it with the existing classification algorithms, we adopted the 10-fold
cross-validation approach, where a dataset is divided into train and test sets in a
ratio of 90:10. In this manner, within one fold, we trained the classification model
using the instances (websites) from 9 out of 10 folds and then tested the model on
the remaining fold (the remaining websites, which were not used for training).

In the case of swarm intelligence approaches for parameter settings of DNN
learning process, which are iterative in nature, all of the used datasets were ini-
tially divided into two subsets in ratio 80:20. The smaller subset (20%) was used
for searching the best parameter settings utilizing our proposed method variants
PSDNN.BA/PSDNN.HBA/PSDNN.FA, while the larger subset (80%) was used to
perform ten-fold cross-validation, in order to keep the performance evaluation as
fair as possible. Folds were made using the stratification method, which splits sets
in such a way that the distribution of classes remains the same across all folds.

All the results reported are the averaged accuracy and F1-macro scores, obtained
on the test websites over all runs for each of the 10 folds, if not specified otherwise.

5. Results

Using the described experiment setup, we obtained the classification results for five
classification methods (LR, base, PSDNN.BA, PSDNN.HBA, PSDNN.FA) on four
different datasets. In this section, the obtained results are presented, compared and
discussed in detail.

5.1. Results on the Mohammad dataset

The classification results (accuracy and F1-macro score), obtained on the Moham-
mad dataset, are presented in Table 2. The best results, for both accuracy and
F1-macro score and for each fold, are presented in bold. We can see, that the firefly
method achieved the best overall accuracy and F1-macro score. All three swarm
approaches turned out to outperform the two compared baseline methods, LR and
baseline NN, in all single folds, while the results of LR and base NN are almost iden-
tical. Interestingly, the accuracy and F1-macro results are very similar and show
practically no difference.

Parameter Setting for Deep Neural Networks using Swarm Intelligence ... 19

To further compare all the methods, we calculated their ranks frequencies
(Fig. 3). The calculated trends of ranks frequencies suggest that the best method
is firefly (with an average rank of 4.8 out of 5 methods), followed by a bat (4.0),
hybrid bat (3.2), LR (1.5), and finally the base NN (1.3). The firefly method turned
out to be superior to others in 8 out of 10 folds, while in the remaining two folds it
achieved the second best rank (being outperformed only by the bat method).

Table 8: The comparison of predictive performance on Mohammad dataset

accuracy F1-macro
LR base bat hbat firefly LR base bat hbat firefly

fold1 93.79 93.91 96.50 96.28 96.73 93.69 93.81 96.45 96.24 96.68
fold2 93.67 93.79 96.05 96.16 96.72 93.59 93.70 95.98 96.12 96.68
fold3 91.30 91.30 93.33 92.99 96.84 91.20 91.20 93.28 92.91 96.79
fold4 91.63 91.52 95.14 94.80 95.93 91.47 91.36 95.05 94.73 95.86
fold5 92.19 91.97 94.91 92.31 96.38 92.09 91.87 94.82 92.07 96.34
fold6 92.53 92.42 96.38 95.59 96.27 92.44 92.34 96.31 95.53 96.23
fold7 93.55 93.44 96.83 94.91 96.95 93.46 93.35 96.79 94.86 96.91
fold8 92.08 92.08 95.25 94.68 96.38 91.97 91.96 95.20 94.63 96.33
fold9 93.78 93.21 96.83 95.48 96.72 93.66 93.09 96.80 95.44 96.67
fold10 93.67 94.00 96.38 96.83 97.62 93.57 93.92 96.33 96.79 97.59
avg 92.82 92.76 95.76 95.00 96.65 92.71 92.66 95.70 94.93 96.61

0 5 10
ranks frequency

1

2

3

4

5

5

5

0

0

0

LR (= 1.5)

0 5 10
ranks frequency

1

2

3

4

5

7

3

0

0

0

base (= 1.3)

0 5 10
ranks frequency

1

2

3

4

5

0

0

2

6

2

bat (= 4.0)

0 5 10
ranks frequency

1

2

3

4

5

0

0

8

2

0

hybrid bat (= 3.2)

0 5 10
ranks frequency

1

2

3

4

5

0

0

0

2

8

firefly (= 4.8)

0 5 10
ranks frequency

1

2

3

4

5

4

5

1

0

0

LR (= 1.7)

0 5 10
ranks frequency

1

2

3

4

5

7

3

0

0

0

base (= 1.3)

0 5 10
ranks frequency

1

2

3

4

5

0

0

2

6

2

bat (= 4.0)

0 5 10
ranks frequency

1

2

3

4

5

0

1

7

2

0

hybrid bat (= 3.1)

0 5 10
ranks frequency

1

2

3

4

5

0

0

0

2

8

firefly (= 4.8)

Fig. 3: The comparison of achieved ranks on the Mohammad dataset regarding
accuracy (top) and f1-macro score (bottom).

To evaluate the statistical significance of the obtained results, we first applied
the Friedman test by calculating the Friedman asymptotic significance for various
classification algorithms. The test confirmed (p<0.001) that there are statistically
significant differences between all used classifiers, regarding both accuracy and F1-
macro score, as was expected already from observing Fig. 3.

20 Vrbančič, Fister Jr. & Podgorelec

The post-hoc Wilcoxon signed ranks test of accuracy ranks with Holm-
Bonferroni correction revealed that both LR (p=0.0051 when compared to bat,
p=0.005 when compared to hybrid bat, and p=0.005 when compared to firefly) and
base NN (p=0.005, p=0.0051, p=0.005) were significantly outperformed by all three
swarm methods. On the other hand, base NN (with handpicked parameters) was
not significantly different from LR (p=0.2603), and even achieved slightly worse
ranks. Among the three swarm methods, firefly significantly outperformed both bat
(p=0.0163) and hybrid bat (p=0.0051), while bat outperformed its hybrid variant
(p=0.0284). The post-hoc analysis of F1-macro ranks is almost identical, with the
same statistical significances and almost the same p values.

5.2. Results on the Abdelhamid dataset

The classification results on the Abdelhamid dataset are presented in Table 9. As
this dataset has three decision classes (legitimate, suspicious, and phishing web-
sites), the accuracy and F1-macro results, in this case, are quite different. While
firefly is again the best method regarding overall accuracy, the hybrid bat achieved
the best overall F1-macro score among all the compared methods. The results of
the base NN on this dataset are by far the worse among all methods and lag also far
behind those of the LR. Again, all three proposed swarm approaches outperformed
the existing two methods.

When looking at the ranks frequencies (Fig. 4), we can see that the base NN is
undoubtedly the worse method here, while LR being the second worst. The differ-
ences among the three swarm methods seem quite low. The Friedman test confirmed
a significant difference among the five methods (p<0.001), both regarding accuracy
and F1-macro score.

The post-hoc Wilcoxon signed ranks test of accuracy confirmed that the base NN
is significantly outperformed by all other methods, and the LR is outperformed by
all three swarm methods, both regarding accuracy and F1-macro. The difference
among the three swarm methods on the Abdelhamid dataset are not significant,
neither regarding accuracy nor F1-macro score. The most best ranks regarding
accuracy were obtained with the firefly method (4 straight wins and 2 tied wins),
and regarding F1-macro with the hybrid bat method (7 wins).

5.3. Results on the Vrbančič-small dataset

The classification results on the Vrbančič-small dataset are presented in Table 10.
This dataset is, besides the Mohammad dataset, the most balanced one (having
a very similar frequency of all decision classes), which results in almost the same
results regarding accuracy and F1-macro score. The best overall accuracy as well
as F1-macro score is again achieved by the firefly method, while the results of the
remaining four methods are very similar.

When looking at the ranks frequencies (Fig. 5), we can see that the firefly is
undoubtedly the best method (with the rank 4.6), achieving 9 out of 10 best ranks

Parameter Setting for Deep Neural Networks using Swarm Intelligence ... 21

Table 9: The comparison of predictive performance on Abdelhamid dataset

accuracy F1-macro
LR base bat hbat firefly LR base bat hbat firefly

fold1 80.91 51.82 87.27 84.55 85.45 56.35 22.75 85.07 83.77 83.57
fold2 83.49 52.29 87.16 88.07 77.98 57.59 22.89 71.88 79.72 68.63
fold3 86.11 51.85 89.81 84.26 85.19 59.60 22.76 85.34 76.43 78.37
fold4 82.41 51.85 82.41 84.26 84.26 57.15 22.76 74.97 81.37 76.30
fold5 81.48 51.85 81.48 87.96 89.81 56.31 22.76 72.64 85.54 85.54
fold6 81.48 51.85 86.11 85.19 86.11 56.17 22.76 77.65 80.11 65.79
fold7 82.41 51.85 87.04 90.74 91.67 56.72 22.76 82.11 88.32 83.32
fold8 84.26 51.85 82.41 87.04 81.48 58.24 22.76 73.82 81.10 74.25
fold9 80.56 75.93 85.19 84.26 88.89 62.80 52.47 80.77 85.47 84.89
fold10 82.24 76.64 85.98 84.11 89.72 56.65 52.25 66.05 75.30 85.48
avg 82.53 56.78 85.49 86.04 86.06 57.76 28.70 77.03 81.71 78.61

0 5 10
ranks frequency

1

2

3

4

5

0

7

1

2

0

LR (= 2.5)

0 5 10
ranks frequency

1

2

3

4

5

10

0

0

0

0

base (= 1.0)

0 5 10
ranks frequency

1

2

3

4

5

0

2

2

4

2

bat (= 3.6)

0 5 10
ranks frequency

1

2

3

4

5

0

1

4

3

2

hybrid bat (= 3.6)

0 5 10
ranks frequency

1

2

3

4

5

0

2

1

3

4

firefly (= 3.9)

0 5 10
ranks frequency

1

2

3

4

5

0

10

0

0

0

LR (= 2.0)

0 5 10
ranks frequency

1

2

3

4

5

10

0

0

0

0

base (= 1.0)

0 5 10
ranks frequency

1

2

3

4

5

0

0

6

2

2

bat (= 3.6)

0 5 10
ranks frequency

1

2

3

4

5

0

0

1

2

7

hybrid bat (= 4.6)

0 5 10
ranks frequency

1

2

3

4

5

0

0

3

6

1

firefly (= 3.8)

Fig. 4: The comparison of achieved ranks on the Abdelhamid dataset regarding
accuracy (top) and f1-macro score (bottom).

both regarding the accuracy and F1-macro score. It is interesting, though, that on
the remaining fold, the firefly method performed the worst. The second best rank
achieved the base method (rank 3.4), followed by the bat (rank 3.0), hybrid bat
(rank 2.1), and LR (rank 1.9).

The Friedman test confirmed significant differences (p=0.008) in both accuracy
and F1-macro score. The post-hoc Wilcoxon test of accuracy results showed that
the firefly method is significantly better than base (p=0.0367), bat (p=0.0469),
hybrid bat (p=0.0069), and LR (p=0.0069). The post-hoc analysis of F1-macro
score showed that firefly significantly outperformed base (p=0.0469), hybrid bat
(p=0.0069), and LR (p=0.0069), while the differences between firefly and bat do
not seem to be significant (p=0.0593), although by a very narrow margin.

22 Vrbančič, Fister Jr. & Podgorelec

Table 10: The comparison of predictive performance on Vrbančič-small dataset

accuracy F1-macro
LR base bat hbat firefly LR base bat hbat firefly

fold1 88.09 89.62 86.98 90.30 91.20 88.05 89.60 86.98 90.27 91.16
fold2 88.04 90.09 88.90 87.62 91.16 87.96 90.04 88.80 87.61 91.11
fold3 87.62 89.24 89.77 87.38 86.66 87.53 89.23 89.75 87.22 86.40
fold4 87.21 87.57 88.55 88.34 90.75 87.13 87.43 88.53 88.27 90.68
fold5 87.77 89.66 88.83 88.30 90.17 87.68 89.66 88.78 88.19 90.13
fold6 86.91 88.83 88.36 67.21 89.28 86.83 88.75 88.30 63.37 89.18
fold7 87.98 88.98 87.40 87.68 90.26 87.90 88.88 87.29 87.68 90.24
fold8 87.98 89.75 89.17 89.02 91.32 87.90 89.69 89.14 88.93 91.27
fold9 87.29 86.57 88.77 88.49 90.13 87.23 86.34 88.70 88.38 90.12
fold10 87.34 88.21 87.57 86.27 90.81 87.27 88.10 87.48 85.96 90.78
avg 87.62 88.85 88.43 86.06 90.17 87.55 88.77 88.37 85.59 90.11

0 5 10
ranks frequency

1

2

3

4

5

3

5

2

0

0

LR (= 1.9)

0 5 10
ranks frequency

1

2

3

4

5

1

1

1

7

0

base (= 3.4)

0 5 10
ranks frequency

1

2

3

4

5

2

0

5

2

1

bat (= 3.0)

0 5 10
ranks frequency

1

2

3

4

5

3

4

2

1

0

hybrid bat (= 2.1)

0 5 10
ranks frequency

1

2

3

4

5

1

0

0

0

9

firefly (= 4.6)

0 5 10
ranks frequency

1

2

3

4

5

3

5

2

0

0

LR (= 1.9)

0 5 10
ranks frequency

1

2

3

4

5

1

1

1

7

0

base (= 3.4)

0 5 10
ranks frequency

1

2

3

4

5

2

0

5

2

1

bat (= 3.0)

0 5 10
ranks frequency

1

2

3

4

5

3

4

2

1

0

hybrid bat (= 2.1)

0 5 10
ranks frequency

1

2

3

4

5

1

0

0

0

9

firefly (= 4.6)

Fig. 5: The comparison of achieved ranks on the Vrbančič-small dataset regarding
accuracy (top) and f1-macro score (bottom).

5.4. Results on the Vrbančič dataset

Finally, the classification results on the Vrbančič dataset are presented in Table 11.
In contrast to Vrbančič-small, this dataset is not balanced. However, this fact does
not seem to have a big influence on the F1-macro score results, which are very
similar to accuracy. Once more, the best overall accuracy, as well as F1-macro
score, are achieved by the firefly method, following by both bat methods, then the
base, while LR performed the worst, both regarding accuracy and F1-macro score.

On this dataset, the methods seem to be very consistent in achieving the same
rank (Fig. 6). The best overall rank was achieved by the firefly method (rank 4.6),
followed by a hybrid bat (4.1), bat (3.3), base (1.9), and LR (1.1).

The Friedman test confirmed the significant differences among methods
(p<0.001) in both accuracy and F1-macro score. The post-hoc analysis confirmed
that LR is significantly worse than all other methods (with p<0.009) and the base

Parameter Setting for Deep Neural Networks using Swarm Intelligence ... 23

is significantly worse than all three swarm methods (with p=0.005 or p=0.0051).
Among the swarm methods, however, the firefly significantly outperformed bat re-
garding accuracy (p=0.0218) and F1-macro score (p=0.0284), while other differ-
ences were not significant.

Table 11: The comparison of predictive performance on Vrbančič dataset

accuracy F1-macro
LR base bat hbat firefly LR base bat hbat firefly

fold1 91.57 92.23 93.64 94.15 94.02 90.82 91.17 93.09 93.59 93.50
fold2 92.22 92.68 93.98 94.53 94.77 91.52 92.10 93.38 94.01 94.27
fold3 92.12 91.95 94.14 94.18 94.67 91.40 90.85 93.59 93.60 94.12
fold4 91.34 92.19 93.98 94.06 94.51 90.50 91.55 93.36 93.45 93.99
fold5 91.28 93.22 93.99 93.53 94.20 90.52 92.47 93.45 92.73 93.65
fold6 91.79 92.51 93.75 93.92 94.11 91.08 91.92 93.22 93.34 93.59
fold7 91.76 93.15 94.09 94.18 94.80 91.02 92.41 93.48 93.62 94.29
fold8 92.31 93.33 94.43 95.28 95.46 91.58 92.74 93.83 94.78 94.96
fold9 91.30 92.62 93.57 94.08 93.63 90.51 91.85 92.84 93.49 92.87
fold10 91.51 92.79 94.20 93.96 93.78 90.71 92.11 93.63 93.36 93.07
avg 91.72 92.67 93.98 94.19 94.39 90.97 91.92 93.39 93.60 93.83

0 5 10
ranks frequency

1

2

3

4

5

9

1

0

0

0

LR (= 1.1)

0 5 10
ranks frequency

1

2

3

4

5

1

9

0

0

0

base (= 1.9)

0 5 10
ranks frequency

1

2

3

4

5

0

0

8

1

1

bat (= 3.3)

0 5 10
ranks frequency

1

2

3

4

5

0

0

1

7

2

hybrid bat (= 4.1)

0 5 10
ranks frequency

1

2

3

4

5

0

0

1

2

7

firefly (= 4.6)

0 5 10
ranks frequency

1

2

3

4

5

9

1

0

0

0

LR (= 1.1)

0 5 10
ranks frequency

1

2

3

4

5

1

9

0

0

0

base (= 1.9)

0 5 10
ranks frequency

1

2

3

4

5

0

0

8

1

1

bat (= 3.3)

0 5 10
ranks frequency

1

2

3

4

5

0

0

1

7

2

hybrid bat (= 4.1)

0 5 10
ranks frequency

1

2

3

4

5

0

0

1

2

7

firefly (= 4.6)

Fig. 6: The comparison of achieved ranks on the Vrbančič dataset regarding accuracy
(top) and f1-macro score (bottom).

5.5. The resulting parameter settings

The performed analysis of empirical results shows the advantage of swarm methods
when compared to LR and base NN. For this purpose, the calculated parameter
settings of their best solutions are presented in Table 12; for comparison, also the
handpicked values for the base NN are presented.

We can see that all three swarm methods resulted in a higher number of neurons
than handpicked, with the only exception being the Vrbančič-small dataset. Espe-

24 Vrbančič, Fister Jr. & Podgorelec

Table 12: The parameter settings of the best solutions, as obtained by different
swarm approaches, and compared to handpicked values for base NN

Mohammad dataset Abdelhamid dataset
base bat hbat firefly base bat hbat firefly

num. of epochs 150 155 135 192 150 134 132 171
batch size 32 44 101 37 32 46 62 24
learning rate .001 .018471 .046237 .005338 .001 .061724 .048576 .060051
num. of neurons 30 50 42 50 9 10 10 16

Vrbančič-small dataset Vrbančič dataset
base bat hbat firefly base bat hbat firefly

num. of epochs 150 140 176 153 150 199 100 175
batch size 32 61 65 69 32 1 27 15
learning rate .001 .000497 .002134 .001371 .001 .000036 .000264 .000194
num. of neurons 111 4 49 57 111 196 221 186

cially the firefly method, which generally performs the best, produced the highest
number on neurons, which suggests that a higher number of neurons allows for
better predictive performance. Interestingly though, the numbers of neurons of all
three swarm methods on the Vrbančič-small dataset were a much smaller than
handpicked.

On all four datasets, the firefly method used a higher number of epochs than
handpicked. On the one hand, this confirms the common idea that more learning
results in better models. On the other hand, however, this result suggests that the
learning process here is not very prone to overfitting.

The differences between handpicked and optimized values regarding the batch
size and the learning rate, especially when compared with the firefly method, are
much smaller, suggesting that those two parameters were picked appropriately.

It is also interesting to compare the calculated parameter values for Vrbančič-
small and Vrbančič datasets. The differences, especially regarding the number of
neurons and batch size, are substantial. We must consider here, that Vrbančič-small
is a balanced version of Vrbančič dataset, with the same features but with fewer
instances. Considering that, it seems that additional instances, although making a
dataset imbalanced, contribute more to the predictive performance (see Table 11)
when compared to a balanced, undersampled version of the same (see Table 10).

Finally, in general, it seems to be beneficial to select a higher number of neurons
and epochs, while the batch size and the learning rate should be smaller.

6. Threats to validity

We are aware of possible threats to the validity of the presented results and im-
plications they bring. In machine learning approaches, the threats often relate to
the diversity, quality, and quantity of the data. To reduce the construct validity re-
garding the data used to train and test the proposed method, we used four different

Parameter Setting for Deep Neural Networks using Swarm Intelligence ... 25

datasets, prepared by different authors from different data sources. To minimize the
threat to external validity, we chose two publicly available phishing websites datasets
and two datasets that we prepared ourselves. Nevertheless, our results may not be
simply generalized to all possible specific situations.

The datasets for training and testing that we used rely crucially on how the
websites were pre-classified. In general, for all the datasets some community sites
for sharing phishing data were used to determine the suspicious websites, while the
non-suspicious websites were collected from trusted directories. In such a way, the
human errors and personal bias have been reduced as much as possible. Besides, our
approach depends on the correctness of the underlying tools we utilize. To mitigate
this risk, we used tools that are commonly used in machine learning community,
such as scikit-learnb and Kerasc, which contains the classification methods used in
our approach.

The potential threat to internal validity could be either splitting the data be-
tween train and test sets, or the non-deterministic nature of methods used. For
the first part, we adopted a well-known 10-fold cross-validation approach, while for
the second part, each result that is based on non-deterministic method has been
obtained as an average of several algorithm runs.

7. Conclusions

In this paper, we presented a swarm intelligence based approach to parameter setting
for learning deep neural networks. The proposed approach has been implemented
using three different swarm intelligence algorithms, namely bat algorithm, hybrid
bat algorithm, and firefly algorithm, and applied to the problem of phishing websites
classification. The results, obtained from the conducted empirical experiments, have
proven the proposed approach to be very promising. The predictive performance of
the resulting deep neural networks, trained using the parameters values as opti-
mized with the help of the proposed swarm intelligence based methods, improved
significantly when compared to the manually tuned neural network. In general, the
proposed firefly method showed the best results in classifying phishing websites,
which was also statistically confirmed.

In the future, we would like to continue our work towards including additional
learning parameters into the optimization process, possibly using different swarm
intelligence algorithms (e.g., Cuckoo search algorithm) and expanding our experi-
ments to other datasets. One step further from the research, presented in this paper,
which we also intend to pursue in the future, is to use computational intelligence
approaches to optimize the self-construction of different neural network topologies
with various depths, widths and types of layers. Additionally, we plan to analyze the
obtained solutions in order to possibly discover some insights into how to optimally
construct a deep neural network for a specific purpose.

bhttps://scikit-learn.org/
chttps://keras.io/

26 Vrbančič, Fister Jr. & Podgorelec

Acknowledgments

The authors acknowledge the financial support from the Slovenian Research Agency
(Research Core Funding No. P2-0057).

References

1. A. Krizhevsky, I. Sutskever and G. E. Hinton, Imagenet classification with deep convo-
lutional neural networks, in Advances in neural information processing systems2012,
pp. 1097–1105.

2. C. Szegedy, W. Liu, Y. Jia, P. Sermanet, S. Reed, D. Anguelov, D. Erhan, V. Van-
houcke, A. Rabinovich et al., Going deeper with convolutions Cvpr2015.

3. K. He, X. Zhang, S. Ren and J. Sun, Identity mappings in deep residual networks, in
European Conference on Computer Vision Springer2016, pp. 630–645.

4. G. Hinton, L. Deng, D. Yu, G. E. Dahl, A.-r. Mohamed, N. Jaitly, A. Senior, V. Van-
houcke, P. Nguyen, T. N. Sainath et al., Deep neural networks for acoustic modeling in
speech recognition: The shared views of four research groups, IEEE Signal Processing
Magazine 29(6) (2012) 82–97.

5. Y. Goldberg, A primer on neural network models for natural language processing,
Journal of Artificial Intelligence Research 57 (2016) 345–420.

6. F. H.-F. Leung, H.-K. Lam, S.-H. Ling and P. K.-S. Tam, Tuning of the structure and
parameters of a neural network using an improved genetic algorithm, IEEE Transac-
tions on Neural networks 14(1) (2003) 79–88.

7. J.-T. Tsai, J.-H. Chou and T.-K. Liu, Tuning the structure and parameters of a neural
network by using hybrid taguchi-genetic algorithm, IEEE Transactions on Neural
Networks 17(1) (2006) 69–80.

8. D.-S. Huang and J.-X. Du, A constructive hybrid structure optimization methodology
for radial basis probabilistic neural networks, IEEE Transactions on neural networks
19(12) (2008) 2099–2115.

9. R. Miikkulainen, J. Liang, E. Meyerson, A. Rawal, D. Fink, O. Francon, B. Raju,
H. Shahrzad, A. Navruzyan, N. Duffy et al., Evolving deep neural networks, arXiv
preprint arXiv:1703.00548 (2017).

10. T. Salimans, J. Ho, X. Chen, S. Sidor and I. Sutskever, Evolution strategies as a
scalable alternative to reinforcement learning, arXiv preprint arXiv:1703.03864 (2017).

11. B. Wang, Y. Sun, B. Xue and M. Zhang, A hybrid differential evolution approach to
designing deep convolutional neural networks for image classification (2018).

12. A. P. Engelbrecht, Fundamentals of computational swarm intelligence (John Wiley &
Sons, 2006).

13. A. E. Hassanien and E. Emary, Swarm intelligence: principles, advances, and appli-
cations (CRC Press, 2016).

14. X.-S. Yang and M. Karamanoglu, Swarm intelligence and bio-inspired computation:
an overview, in Swarm Intelligence and Bio-Inspired Computation (Elsevier, 2013) pp.
3–23.

15. X. S. Yang, A new metaheuristic Bat-inspired Algorithm, Studies in Computational
Intelligence 284 (2010) 65–74.

16. X.-S. Yang, Firefly algorithm, stochastic test functions and design optimisation, arXiv
preprint arXiv:1003.1409 (2010).

17. D. W. Boeringer and D. H. Werner, Particle swarm optimization versus genetic algo-
rithms for phased array synthesis, IEEE Transactions on antennas and propagation
52(3) (2004) 771–779.

18. A. P. Piotrowski, M. J. Napiorkowski, J. J. Napiorkowski and P. M. Rowinski, Swarm

Parameter Setting for Deep Neural Networks using Swarm Intelligence ... 27

intelligence and evolutionary algorithms: performance versus speed, Information Sci-
ences 384 (2017) 34–85.

19. G. Vrbančič, I. Fister, Jr. and V. Podgorelec, Swarm intelligence approaches for pa-
rameter setting of deep learning neural network: Case study on phishing websites
classification, in Proceedings of the 8th International Conference on Web Intelligence,
Mining and Semantics WIMS ’18, (ACM, New York, NY, USA, 2018), pp. 9:1–9:8.

20. G. Vrbančič, I. Fister, Jr. and V. Podgorelec, Designing deep neural network topologies
with population-based metaheuristics, in Proceedings of the Central European Confer-
ence on Information and Intelligent Systems, Varaždin, Croatia, 19. - 21. septem-
ber2018, pp. 163–170.

21. D. Lacey, P. Salmon and P. Glancy, Taking the Bait: A Systems Analysis of Phishing
Attacks, Procedia Manufacturing 3 (2015) 1109–1116.

22. R. Gowtham and I. Krishnamurthi, A comprehensive and efficacious architecture for
detecting phishing webpages, Computers and Security 40 (feb 2014) 23–37.

23. I. Fister, D. Fister and X. S. Yang, A hybrid bat algorithm, Elektrotehniški Vest-
nik/Electrotechnical Review 80(1-2) (2013) 1–7.

24. I. Fister, I. Fister Jr, X.-S. Yang and J. Brest, A comprehensive review of firefly
algorithms, Swarm and Evolutionary Computation 13 (2013) 34–46.

25. I. Fister, P. N. Suganthan, I. Fister, S. M. Kamal, F. M. Al-Marzouki, M. Perc and
D. Strnad, Artificial neural network regression as a local search heuristic for ensemble
strategies in differential evolution, Nonlinear Dynamics 84(2) (2015) 895–914.

26. J. Schmidhuber, Deep Learning in neural networks: An overview, Neural Networks 61
(2015) 85–117.

27. W. Liu, Z. Wang, X. Liu, N. Zeng, Y. Liu and F. E. Alsaadi, A survey of deep neural
network architectures and their applications, Neurocomputing 234 (2017) 11–26.

28. V. Nair and G. E. Hinton, Rectified linear units improve restricted boltzmann
machines, in Proceedings of the 27th international conference on machine learning
(ICML-10)2010, pp. 807–814.

29. X. Glorot, A. Bordes and Y. Bengio, Deep sparse rectifier neural networks, AISTATS
’11: Proceedings of the 14th International Conference on Artificial Intelligence and
Statistics 15 (2011) 315–323.

30. Y. Lecun, Y. Bengio and G. Hinton, Deep learning (may 2015).
31. R. M. Mohammad, F. Thabtah and L. McCluskey, Predicting phishing websites based

on self-structuring neural network, Neural Computing and Applications 25(2) (2014)
443–458.

32. Y. Bengio, Practical recommendations for gradient-based training of deep architec-
tures, CoRR abs/1206.5533 (2012).

33. L. Bottou, Large-Scale Machine Learning with Stochastic Gradient Descent, in Pro-
ceedings of COMPSTAT’2010 , eds. Y. Lechevallier and G. Saporta (Physica-Verlag
HD, Heidelberg, 2010), pp. 177–186.

34. D. P. Kingma and J. L. Ba, Adam: A Method for Stochastic Optimization, ICLR
(2015).

35. J. Duchi, E. Hazan and Y. Singer, Adaptive Subgradient Methods for Online Learning
and Stochastic Optimization, Journal of Machine Learning Research 12 (2011) 2121–
2159.

36. T. Tieleman and G. Hinton, Lecture 6.5-rmsprop: Divide the gradient by a running
average of its recent magnitude, COURSERA: Neural networks for machine learning
4(2) (2012) 26–31.

37. N. Abdelhamid, A. Ayesh and F. Thabtah, Phishing detection based Associative Clas-
sification data mining (oct 2014).

28 Vrbančič, Fister Jr. & Podgorelec

38. G. Aaron and R. Manning, APWG phishing reports. apwg. 2014.
39. I. Fette, N. Sadeh and A. Tomasic, Learning to detect phishing emails, in Proceedings

of the 16th international conference on World Wide Web ACM2007, pp. 649–656.
40. D. Miyamoto, H. Hazeyama and Y. Kadobayashi, An evaluation of machine learning-

based methods for detection of phishing sites, in Lecture Notes in Computer Science
(including subseries Lecture Notes in Artificial Intelligence and Lecture Notes in Bioin-
formatics) 5506 LNCS, (Springer, Berlin, Heidelberg, nov 2008), pp. 539–546.

41. R. M. Mohammad, F. Thabtah and L. McCluskey, An assessment of features related to
phishing websites using an automated technique, in Internet Technology And Secured
Transactions, 2012 International Conference for IEEE2012, pp. 492–497.

42. G. Vrbančič, Phishing dataset (2019), Available at
https://github.com/GregaVrbancic/Phishing-Dataset, Accessed: 2019-05-23.

43. R. B. Basnet, A. H. Sung and Q. Liu, Rule-based phishing attack detection, in Inter-
national Conference on Security and Management (SAM 2011), Las Vegas, NV 2011.

44. OpenDNS, PhishTank data archives Available at https://www.phishtank.com/, Ac-
cessed: 2018-01-17.

45. Mat Bright, Phishing scams and spoof emails at MillerSmiles.co.uk (2003).
46. S. Dreiseitl and L. Ohno-Machado, Logistic regression and artificial neural network

classification models: a methodology review, Journal of Biomedical Informatics 35(5)
(2002) 352 – 359.

47. G. Vrbančič, L. Brezočnik, U. Mlakar, D. Fister and I. Fister Jr., NiaPy: Python mi-
croframework for building nature-inspired algorithms, Journal of Open Source Soft-
ware 3 (2018).

48. F. Chollet et al., Keras (2015), Available at https://keras.io, Accessed: 2018-01-23.
49. T. E. Oliphant, A guide to NumPy (Trelgol Publishing USA, 2006).
50. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, B. Thirion, O. Grisel, M. Blon-

del, P. Prettenhofer, R. Weiss, V. Dubourg, J. Vanderplas, A. Passos, D. Cournapeau,
M. Brucher, M. Perrot and E. Duchesnay, Scikit-learn: Machine learning in Python,
Journal of Machine Learning Research 12 (2011) 2825–2830.

